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1. RELATIONS FOR AN ELASTIC STRIP OF VARIABLE WIDTH 

In thexy coordinate plane, we consider an elastic strip II of variable width (Fig. l), the upper boundary 
r+ of which is described by the function y = h+(x) and the lower boundaT r_ is rectilinear: y = -6. 

Below, we will use a prime on the symbol of a function to denote a derivative with respect to the 
x coordinate. For brevity, the arguments of functions may be omitted. 

Suppose u and v are the displacements along the x and y axes, respectively and that wk (k = 1, . . . , 
4) are the displacements of the boundaries of the strip: 

u Ir_ = w,(x), u Ii-_ = W2W~ u Ir+ = WJ (xl VII-+ = w4G) 

In addition, we will denote the shear and the normal stresses on the upper and lower boundaries of 
the strip (Fig. 1) by q: and qt. 

According to the results obtained previously [2], the following asymptotic relations hold in the case 
of a thin strip with a gradual by changing width 

&w = 
iz(2z + I) I 

6(z2 - I) 
h’(x)w;(x)+ ~ 

2(=-l) 
w;(+)-(4g2 -“-%‘(x)w;(x)+ 

6(ze2 -I) 

z-2 
+-w;(x) + A,h(x)w;‘(x) + B,h(x)w~(x) 

2(z- I) 

+_w’(x)- =@=-l) I z-2 

2(=-l) ’ 6(te- l)2 
h’(x)wG(x)-- 

2(ze- I) 
w;(x) - 

(ae - 2)(4ae - 3) _ 

6(ae-I)* 
h’(x)w;(x) + A,h(x)w;(x)+ Bvh(x)w~(_x) 

{;;}=&[l’$+ {;}= 6(;:;;;1) 

&=(a:+ I)(=-I)-‘, h(x)=b+h+(x), ae=3-4v 

(1.1) 

where v is Poisson’s ratio and G is the shear modulus. 
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Fig. 1 

By using the auxiliary coordinate X = -x, jj = -y and the corresponding stresses C$ = q;, ij: = q;, 
the following equalities can be obtained from (1.1) 

~q;(+)=l(wl(x)-w,(x))- 
2&l 

2(2a::;;(x) (w,(x) - w*(x)) + 

+ =(a:+ 2) 
6(ae2 - 1) 

h'(x)w;(x> + 
re-2 

-w;(X)- 
a$ae+2) 

2(=-l) 6(5e* - 1) 
h’(x)w;(x)+ 

I 
+---w;(x) - A,h(x)w;(x) - B,h(x)w;‘(x) 

2(ae- I) 

-&q;(X)= p* 2hIx)(w4W w*(x))- 2($$gw w,W)- 

z-2 
--w;(x)+ 

a(c - 2) 1 

2(re- I) 6(a:- I)* 
h’(x>w;(x)+- 

2(a:- 1) 
w;(x)- 

a$Le - 2) 

- 6(ae- I)* 
h’(x)w;(x) - A,h(x)wl,‘(x) - B,h(x)w;(x) 

(1.2) 

The quantities h, h’, h” will subsequently be assu_med to be small quantities of the order of E, that is 
h(x) = &( ) h x , w ere E is a small parameter and h(x) is a specified function. In this case, the terms 
containing a product of the quantities h, h’, h” will be of the second order of smallness and will therefore 
be omitted. 

It immediately follows from (1.1) that the difference w 3 - w1 and w4 - w2 and, consequently, their 
derivatives will be of the order of E. When this fact is taken into account in the result of the differentiation 
of (l.l), which have been multiplied by h beforehand, we obtain 

-$&9&G) = W;(X) - w;(x) + (h(x)w;(x)Y 

if-l(h(x)q;(x))’ = w;(x) - w;(x) -z(h(x)w;(x))’ 
G(;e+ I) 

(1.3) 

Relations (1.3) enable us to find expressions for the stresses q;,” in terms of q: “. In order to do this, 
we subtract the first and second equalities of (1.2) from the corresponding equalities of (1.1) and, from 
the relations obtained in this way, we express the differences (w; - w;), (wi - wi), taking account of the 
expressions for (w3 - w,), (w4 - w2), which hold by virtue of (1.1). As a result we obtain the relations 

w;(x)-- w;(x)= -L(~:(X)--~;(X))-~~-I~)~‘(X)~:(I)+ 
G(a:-3) 
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and, substituting these into (1.3), we arrive at the required expressions 

st(X)-q;(.r)= 
E-3 
---&h(x)q,+(x)Y + h’(x)&) - -j+x)w;(x))’ 

q,+(x) - q;(x) = -(Mx)qf(x))‘- h’(x)&(x) (1.4) 

2. RELATIONS 

We shall henceforth assume 
(Fig. 1) so that [3] 

FOR A COMPOSITION CONSISTING OF A STRIP 
AND A HALF-PLANE 

that the boundary I_ of the strip II is bound to an elastic half-plane 

w;(x) = -C*q;(x)+ D21zds = -C*q;(x)+ D+;(x) 

(2.1) 
- q;(s) 

w;(x)= Q;(x)+ 4 I -dsrC,q;(x)+D2K,-(x) 
_ s-x 

where C2 = -(l - 2~9(2G&~, D2 = (1 - vz)(rcG&‘, ~2, G2 are the elastic constants of the half-plane. 
The subscript 1 is subsequently used to denote the elasticity constants of the strip. 

We will assume that the contact stresses q$ are functions with zero values outside a certain contact 
area (a, b), and that the derivatives of these functions satisfy the Holder condition in [a, 61 

q:“(x) = 0, x z (a,b); q&(x) E Ma,61 (2.2) 

As regards the width of the strip, in addition to the known constrains [2], it is assumed that the 
corresponding function h(x) and its derivative satisfy the Holder condition on any segment of the x axis, 
that is / 

h(‘)(x) E H (- m, -), k = 0,l (2.3) 

The aim of the subsequent calculations is to obtain relations between the boundary deformations 
w;, w; and the contact stresses q:, qz. The following scheme will be used here: the quantities w;, w; are 
eliminated using relations (2.1) and (1.3) after which the stresses q;, q; in the resulting equalities are 
expressed in terms of q:, q:in accordance with (1.4). 

In order to carry out these transformations, two assertions are required. 

Assertion 1. Supposef(x) E H[a, b]. Then 

Proof. We introduce the function v(x) = f(x) - r(x), where 

r(x) = - ~~ol~X-.)f(b)+(b-X)I~u~l-~X;~~bq;X)I~X-u)f2-(b-l)fi] 
fi =f’(a)_ f(bb)I@, f* =f’(b)_ f(bb)I;I((I) 

(2.4) 

so that 

v(a) = w(b) = y’(u) = yql) = 0, V’(x) E Hfu.61 (2.5) 



148 I. A. Soldatenkov 

Relations_(2.5) enable us, by considering an arbitrary smooth closed contour L containing an arbitrary 
interval [ii, b] > [a, b] on the real axis in the complex plane z = x + iy and equating the function w(t) 
at points t of the contour outside the interval [a, b] to zero, to establish that w’(t) E H(L), t E L and, 
consequently, [4] 

Replacing the function V(X) in the last equality by the difference f(x) - r(x), taking the integrals of 
the functions r(x) and /(x) and taking the arbitrariness in the choice of the interval [ii, b] 3 [a, b] into 
account, we obtain relation (2.4). 

Assertion 2. Suppose f(x) E H[a, b], g(x) E H(-m, -) andf(x) = 0, x E (a, b). Then 

O” g(s) h fO)dr 
f-f- 

i h s 
_s-x o r-s 

= -n2f(x)g(x) + y f(t)K(r, x)dt 
0 

(2.6) 

where 

K(t,x)= 7 P(S~X)dS 
_ (s - x)(t - s) ’ Ph x) = g(s) - g(x) 

Proof. Equality (2.6) is obtained on taking infinite limits of integration in the Poincare-Bertrand 
formula [5] and making use of the fact that the function f(x) is equal to zero outside the interval (a, b). 

We now substitute (2.1) into (1.3) and, in them, we replace q;, q; by q:, qc in accordance with 
expressions (1.4). In the equalities obtained in this way, we introduce, using Assertion 1, the 
operation of differentiation under the integral sign and using Assertion 2 and taking,account of condition 
(2.2) we carry out the following transformation of the double integral obtained in the first of these 
equalities 

7 tww,- (SW ds = -~~(h(x)q:(x))‘+ R(x)+ O(E~) 
s-x 

where 

R(x) = j4:‘(t)Ko(‘,x)d’+jq:(I)K,(l,x)dt 
(I a 

As a result, we obtain the required relations 

w;(x) = -+x)q:(x))‘- C,(&)+ h’C#(xN+ QK,+(x) - 
I 

-D,ph(x)K;‘(x)- 4h’(x)K,+(x)+- 8G1Di /Qx) _ 

(=, + 1) 

_2~~,~n”[,_n~]~“(~~s)ds_~2(p_,)~P(s~~~~(s), (2.7) 

w;(X)=Bk,(htx)q~(x))‘+C2(q:(X)--’tX)~.=(X))+~2~~(x)+ 

+ alpha,+‘+ ~~(j.t - r)h’(x)K3x)+ 24 7 h’(s’_“:,‘s’ds + D2 7 p(s9x)q”(s) ds 
_ s-x 

where 
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4 
.* (a?, + I)* 

=1+;(&2-l)-- 
k _l+n(ael-3)(a2-l) n* (%2-l)* 

2 (a?,+]) ’ “-- 2 
-- 

@, - 1) 2 (q-1) 

Remark. On putting h(x) = const, q:(x) = 0 in (2.7), we arrive at the relations from [l], while for a uniform 
half-plane, when h(x) = const, v1 = v2, G1 = GZ, equalities (2.7) take the form of (2.1) from [3]. 

In the case when vi = v2, G, = G2, that is, of a uniform half-plane with an irregular boundary, we 
have from (2.7) 

W;(X)=-C2(q=(X)+h’(x)qf(x))+D2K:(x)-D,h’(x)K=(x)+ 

+8G,D:R(x)+4 5 pot e?,+‘(s) ds 

(=,+I) - s-x 

(2.8) 

w;(x) = c,(q:tx)-h’(x)q:(x))+D2K5(X)-D*h’(x)K,+(x)+ 

+24 7 h’(s)q’(s) ds + 4 1 - P(S, x)q:‘(d~s 
_ s-x _ s-x 

3. NUMERICAL VERIFICATION OF THE CALCULATIONS 

We consider the half-plane y s 0, to the boundary y = 0 of which the stresses rV lY=,, = z(x), 
oY lY=a = o(x) are applied. Within this half-plane, we draw the curve I+:y = h(x) -h*. The displacements 
of r+ along the x and y axes are denoted by w3 and w4 and the shear and normal stresses on I+ are 
denoted by q: and qz 

The quantities w3, w4 and q:, q: can be found starting from the known solution of the boundary- 
value problem for the half-plane y s 0. On the other hand, these quantities correspond to a problem 
on the deformation of a half-plane with an irregular boundary I+ and must be associated with relations 
(2.8). Hence, by determining the quantities w3, w4 and q:, q: in r+ from the solution of the problem 
for the half-plane y s 0 and substituting them into relations (2.8), it is possible to verify these relations. 

As an example, we will consider the case when 

h(x) = 
h. T(X) = 

T XE[--a,,a,l (3, 

I +(x/1)* ’ 
o(x) = 

XEI%J.U~l 

0, xZ[-a,,n,l 0, X -F l-ao,aol (3.1) 

where h, z= 0, 1 > 0, a0 > 0, T, CJ are certain parameters. We will check equalities (2.8) at the point 
x = 0. 

According to definition (3.1), the curve r+ in the neighbourhood of the point x = 0 coincides with 
the boundary of the half-planey s 0. The exact value of w;(O) and w:(O) can therefore be obtained by 
making use of the relations for a half-plane of the form of (2.1). As a result, taking account of expression 
(3.1) for the contact stresses, we find 

w;(o) = -c*ls. w;(o) = c*r (3.2) 

Using the well known formulae [6] for the stresses in a half-plane for the piecewise-constant contact 
stresses (3.1), we obtain the following expression for the stresses q:, q:in I+ apart from to terms O(E’) 

in whichz = h. -h(x) and the integrals 
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lk(x,=y (x-r)'dr 

&-I)* +2*1* 

are taken in explicit form in [7]. 
In the case of a function h(x) of the form of (3.1) andx = 0, the kernels Ka,i from (2.8) have the form 

K&O) = 
nh. 

1(1’ 
K, (LO) = - 

xh.V3+T2) TZ’ 

12(l+T2)2 ’ 1 

Equalities (3.1), (3.3) and (3.4) define the integrands in (2.8) in explicit form. By carrying out numerical 
integration, it is possible to find the right-hand sides of (2.8) and to compare them with the values of 
~$0) w;(O) which are known from (3.2). 

Calculations were carried out for 1 = 1 m, a0 = 1 m, z = -10’ Pa, o = lo5 Pa, vz = 0.25 and 
G* = lOi Pa 

Graphs of the calculated values of the right-hand sides of the first and second relations of (2.8) when 
x = 0 on h, are shown in Fig. 2 (the solid lines). The values w;(O) and wi(O) of the left-hand sides of 
(2.8), according to (3.2), are represented by the dot-dash lines. The dashed lines 1 correspond to the 
right-hand sides of (2.8) with the last terms omitted, while the dashed lines 2 correspond to the classical 
expressions for w;(O), w;(O) of the form (2.1). 

These graphs indicate that the deviation of the left-hand and right-hand sides of (2.8) is reduced to 
zero when h, + 0 and that the deviation is of the second order of smallness with respect to h,. This is 
evidence of the validity of relations (2.8) the accuracy of which is also of the second order of smallness 
with respect to E - h, (we recall that the terms O(E*) were omitted in the derivation of (2.7) and (2.8)). 

The retention of certain terms on the right-hand sides of relations (2.8) decreases the order of their 
accuracy. The classical expressions of the form (2.1) also do not have such a high accuracy as (2.8). 
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4. EXAMPLES 

Relations (2.7) extend the well-known relation [l] to the case of a strip with a gradually changing width. 
A question arises in connection with this: how substantial can the difference in the results turn out to 
be when relations (2.7) are used instead of those obtained previously in [l]? In order to answer this 
question, two examples are considered below which involve an analysis of the wear of a thin coating, 
the deformation properties of which are described by the model of an elastic strip which has been 
considered above. 

Consider a coating of thickness ho = const bonded to a rigid base into which a punch of cylindrical 
shape with the generatrix perpendicular to the xy plane (Fig. 1) and moving at a velocity V, is pressed. 
As a result of this interaction, the coating is worn away and its thickness decreases: h = ho - Wand, 
furthermore, the rate of wear W is assumed to be proportional to the contact pressure p = -4:: 

aww) wx, 0 
-=----=% I v, Ip(x,t), W(x,O)=O, h(x,O)=h, at at (4.1) 

To determine the displacement along the y axis of the upper boundary of the coating we make use 
of the equality w4 = -Bhp which, when h = h, follows from the second relation of (2.7) and, when 
i; = ho, follows from the relations obtained in [l], if account is taken of the fact that G2 = 00 in the 
case of a rigid base. Then, the condition for contact between the punch and the coating is represented 
in the form [8, 91 

B&x,t)p(x,t)+ W(x,t) = &x,2) 

d(x,r)=-&)+6(f), I;(x,t)=(h(x,t),h,,) 

(4.2) 

where g(x) is the shape of the punch and s(t) is its penetration. 
Equations (4.1) and (4.2) describe the process of wear of a coating on a rigid base and the case 

i;(x, t) = h(x, t) corresponds to relations (2.7) while, when h(x, t) = ho, the relations in [l] are used and 
the elastic compliance of the coating during its wearing is assumed to be invariable [8]. 

1. Suppose the punch moves in a perpendicular direction to thexy plane and that its area of contact 
with the coating is constant (a similar formulation of a contact wear problem was considered, for example, 
in [9]). We will assume that the penetration 6 increases linearly with time: 6(t) = 6e + 6,t. On eliminating 
the function p(x, t) from Eq. (4.2) using (4.1) and employing the notation a = a, ] I’, ] , we obtain the 
differential equation 

+h(x,r)=h,+g(x)-6,-6,f, h(xvO)=h, (4.3) 

the solution of which, when &x, t) = ho, is obtained in an elementary manner and, when 
6(x, t) = h(x, t), it can be found in parametric form [lo] (5 is the parameter). 

~=~A~(x)ll-exp[cp(k)-cp(S)l) 
I 

&Al 
A#) ’ 

A, = ;6,B, A,(x) = ;[h,, -a0 +g(x)] 

ev[cp(5)1= 15 - 5, I++‘*1 5 - t2 l(‘+y)‘2, 5,,* =31T(I-4A,)K] 

(4.4) 

According to Eqs (4.4), when g(x) = 0, the contact pressure p and the thickness h solely depend on 
the time t, being constants within the limits of the contact area. A graph ofp(t) is shown in Fig. 3. The 
dashed curve corresponds to the solution of Eq. (4.3) when h(x, t) = ho. 

2. Suppose a parabolic punch moves in the xy plane with a velocity V, in the opposite direction to 
the x axis. We associate a system of coordinates with the punch and consider the steady wearing of the 
coating in this system (a similar formulation of the problem was considered in [ll], for example). 
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If the contact area is denoted by [-a, bli the?, in the case of a parabolic punch g(x) = kx*, the right- 
hand side of (4.2) has the form d(x) = k(a --x ). Moreover, the relation W’(X) = -h’(x) = cr&) [ll] 
holds. 

Using the last two equalities from (4.2), it is possible to obtain the equation 

$i(X)k’(X)+h(X) = h, -k(a2 -2) (4.5) 

subject to the following conditions: h(- a) = &,P(- a) = p(b) = 0. The corresponding solution can be 
constructed numerically without difficulty using the difference scheme in [12]. 

Graphs of the ratio a/b, which characterizes the asymmetry of the contact area, against the magnitude 
of the relative pene_tration 6* = ka*/h,,, are presented in Fig. 4. The solid curve is obtained 
from Eq. (4.5) when h(x) = h$ ) x and the dashed curve is obtained when L(X) = ho. The magnitude of 
]h’(x) 1 did not exceed 5 x lo- for the graphs shown. 

The graphs shown in Figs 3 and 4 indicate that allowing for the change in the elastic compliance of 
the coating on the basis of relations (2.7) can have a substantial effect on the results of the calculation 
of the wear of a coating compared with what takes place when the relations previously obtained in [l] 
are used. 

This research was supported financially by the Russian foundation for Basic Research (98-01-00901). 
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